
pinned_vector
A Contiguous Container without Pointer Invalidation

Meeting C++ 2018

std::vector

2

contiguous layout cache locality

fastest iteration O(1) lookup

random access amortized O(1) growth

std::vector

3

contiguous layout cache locality

fastest iteration O(1) lookup

random access amortized O(1) growth

POINTER
INVALIDATION

capacity=6

std::vector Invalidation

4

capacity=6

std::vector Invalidation

5

capacity=12

capacity=6

std::vector Invalidation

6

capacity=12

capacity=6

std::vector Invalidation

7

capacity=12

capacity=6

std::vector Invalidation

8

std::vector Invalidation

9

may invalidate all always invalidates all may invalidate other

push_back clear insert

emplace_back assign erase

insert

emplace

reserve

resize

shrink_to_fit

10

Contiguous Storage Invariant

Contiguous Storage Invariant

11

erase()

Contiguous Storage Invariant

12

erase()

Contiguous Storage Invariant

13

erase()

Contiguous Storage Invariant

14

insert()

Contiguous Storage Invariant

15

insert()

Contiguous Storage Invariant

16

insert()

Alternatives with Truly Stable Pointers

17https://en.cppreference.com/w/cpp/container

https://en.cppreference.com/w/cpp/container

Alternatives with Truly Stable Pointers

18

boost::stable_vector<T> ● Not a “vector”
● Not contiguous
● Equivalent to

vector<unique_ptr<T>>

T* T* T* T* T* T* T* T* T* T* T* T*

Alternatives with Truly Stable Pointers

19

plf::colony

https://youtu.be/wBER1R8YyGY

Alternatives with Truly Stable Pointers

20

plf::colony

● Manages elements in disjoint
memory chunks

● Contiguous layout not guaranteed
● Iteration performance comparable to

std::deque
● Primary use case is storage, not

iteration

“A Contiguous Container without Pointer Invalidation”

21

“A Contiguous Container without Pointer Invalidation”

22

not quite…

must maintain contiguous layout invariant

“A Contiguous Container with Essential Pointer Invalidation”

23

The minimum amount of pointer invalidation
absolutely necessary to maintain the contiguous
layout invariant.

If insertion or erasure occurs only at the end of
the container then pointers to all other elements
shall remain valid.

Idealized std::vector with infinite capacity.

std::vector Invalidation

24

may invalidate all always invalidates all may invalidate other

push_back clear insert

emplace_back assign erase

insert

emplace

reserve

resize

shrink_to_fit

pinned_vector Invalidation

25

may invalidate all always invalidates all may invalidate other

push_back clear insert

emplace_back assign erase

insert

emplace

reserve

resize

shrink_to_fit

Virtual Memory History
● Introduced in DEC’s VAX-11/780

(“Virtual Address eXtension”, 1977)
● First consumer CPU with integrated

MMU Intel 80286 (1982)

26

Virtual Memory
● Illusion of huge memory
● Abstraction of Hardware Storage and Resources

○ Physical Memory
○ Filesystem
○ Memory mapped I/O
○ Inter-Process Communication

27

Virtual Memory vs Physical Memory

28

#include <memory>
#include <iostream>

int main()
{
 auto foo = std::make_unique(42)
 std::cout << foo.get() << std::endl;
 return 0;
}

Virtual Memory

29

Virtual Memory

Main Memory

Filesystem

GPU Memory Other Process

Virtual Memory
● Process isolation

○ Separate address space

● More space then physical available
○ x86-64 eg. 128TiB

30

Page
● Fixed size block of virtual memory
● Most CPUs have a minimum page size of 4 KiB

○ Memory aligned in page size

● Huge Pages
○ x86-64 has also 2 MiB and 1 GiB pages
○ Performance

31

Memory Management Unit
● Everyone here has seen it in action already

○ terminated by signal SIGSEGV (Address boundary error)
○ Access Violation

● Separate part on the CPU to map virtual memory addresses to physical
memory addresses

● Page protection
○ Check Read, Write, Executable Bit

32

Translation Lookaside Buffer
● Part of the MMU
● Stores mapping of physical and virtual addresses
● Hardware accelerated
● Typically has 4096 entries

33

Page Table
● Cache for TLB
● Stored in memory
● Page walk

○ Hardware or Software

34

35

Swap Space
● File / Partition
● Unused Pages are saved on disk to free physical memory
● Controlled by the OS

36

Page-Faults

37

Virtual Memory

Physical Memory

Swap file

Page-Faults

38

Virtual Memory

Physical Memory

Swap file

Page-Faults

39

Virtual Memory

Physical Memory

Swap file

Page-Faults

40

Virtual Memory

Physical Memory

Swap file

Page-Faults

41

Virtual Memory

Physical Memory

Swap file

Page-Faults

42

● Access to pages which are not loaded in physical memory
● Swap of pages into/from swap file
● Super expensive

TLB Miss

43

MMU

Memory

Page table

TLB

Translate virtual
address

✅

Return physical
address

Thrashing

44

● Constant swapping of pages
● Unresponsive system

○ Filesystem Access

Mapping Memory

● Prevents other allocations within reserved
area

● Does not consume memory or swap space

45

● Get physical memory space
● Consumes memory or swap space

Reserve Commit

0

Virtual Memory Address Space

fff...

pinned_vector Internals

46

auto v = pinned_vector<int>(max_elements(1’000’000’000));

VirtualAlloc(..., MEM_RESERVE);
mmap(..., PROT_NONE, MAP_ANON | MAP_PRIVATE);

v.max_size();

max_pages
max_bytes

0

Virtual Memory Address Space

fff...

pinned_vector Internals

47

auto v = pinned_vector<int>(max_elements(1’000’000’000));

v.push_back(279);

v.push_back(188);

...

VirtualAlloc(..., MEM_COMMIT);
mprotect(..., PROT_READ | PROT_WRITE);

0

Virtual Memory Address Space

fff...

pinned_vector Internals

48

auto v = pinned_vector<int>(max_elements(1’000’000’000));

v.pop_back();

...

VirtualFree(..., MEM_DECOMMIT);
mprotect(..., PROT_NONE); madvise(..., MADV_DONTNEED);

v.shrink_to_fit();

But Is It Any Good?

49

std::vector pinned_vector

auto v = Container<T>();

v.reserve(n);

⏱

fill_n(back_inserter(v), n, x);

⏱

Round 1: establish a common baseline

50

Baseline for int

51

Baseline for bigval

struct bigval
{
 double data[10];
};

52

Baseline for std::string

53

Baseline All

So Is It Any Good?

54

std::vector pinned_vector

auto v = Container<T>();

v.reserve(n);

⏱

fill_n(back_inserter(v), n, x);

⏱

Round 2: size not known upfront

55

Total Time for int

56

Total Time for bigval

struct bigval
{
 double data[10];
};

57

Total Time for std::string

58

Total Time

Yes It Is Good

59

std::vector pinned_vector

Round 3: so how much faster is it?

● Normalize the runtimes:
● Treat vector<T> time as 1.0
● Rescale pinned_vector<T> time based on that

60

Total Speedup

Windows 10 build 17134 (x64)
Intel Core i7-7700HQ @ 2.80 GHz
Clang-7.0.0 (VS 15.8.4 stdlib)

61

Total Speedup

MacOS 10.14.1 (x64)
Intel Core i7-7820HQ @ 2.90 GHz
Apple LLVM 10.0.0 (clang-1000.11.45.5)

62

Total Speedup

Windows 10 build 17134 (x64)
Intel Core i7-7820HQ @ 2.90 GHz
Clang-7.0.0 (VS 15.8.4 stdlib)

But Why Is It Good?

63

std::vector pinned_vector

Round 4: where does a vector’s time go?

auto v = vector<T, bump_alloc>();

⏱

fill_n(back_inserter(v), n, x);

⏱

≡ total time - allocations
≡ insertion + copying
≡ baseline + copying

Times for: insertion + allocation + copying

64

Breakdown of push_back

65

Breakdown of push_back

66

Breakdown of push_back

Benchmark Conclusions

67

push_back with preceding reserve() roughly equivalent

slower than std::vector for small sizes

faster than std::vector after a breaking point

achieved by not copying values around

exact numbers vary significantly by system and value_type

Availability
● Virtual Memory Support
● Desktop

○ Linux
○ macOS
○ Windows

● Mobile
○ Android
○ iOS (reserve limited by physical memory)

68

Use Case ECS
● ECS: Entity Component System

- Entity: ID
- Component: Data only storage
- System: Uses Components to operate on these

● Data Oriented Design
○ Data oriented design in C++ by Mike Acton
○ Data-oriented design in practice by Stoyan Nikolov

● Mostly used in Games

69

ECS with std::vector

70

Storage (std::vector)

Handle:
Raw Pointer to
Component

ECS with std::vector

71

Storage (std::vector)

Handle:
Raw Pointer to
Component

New Storage (std::vector)

ECS with std::vector

72

Handle:
- Index

Entity System

Logic

Storage

Index

std::vector

Data

Component

ECS with std::vector

73

Pro:

● Dynamic Storage
○ grow/shrink

dynamically during
runtime

Con:

● Use of Handles
○ e.g. index
○ Indirection

ECS with std::array

74

Pro:

● No Indirection

Con:

● Preallocate memory
=> waste of memory

● Need max size
● No dynamic resizing

ECS with pinned_vector

75

Component Handle:
- Pointer

Entity System

Logic

Storage of
Components

Data

Component

pinned_vector

Future Work
● pinned_stack
● Shared memory
● Page-fault avoiding hash table

76

Thank you

77

Implementation will be released at

https://github.com/mknejp/vmcontainer

Once all the finishing touches are done.

Jakob Schweisshelm
@jakouf

Miro Knejp
@mknejp

https://github.com/mknejp/vmcontainer

