
Partially-Formed	Objects
For	Fun	and	Profit

Meeting	C++	2020	(virtual),	2020-11-14

Marc	Mutz	<marc.mutz@kdab.com>

Created	on	November	14,	2020



p.2

No	part	of	this	publication	may	be	made	available	to	others	than	the
named	licensee	which	is	shown	on	every	page	by	any	means,	electronic,
mechanical,	photocopying,	recording	or	otherwise,	or	translated	into	any
language,	without	the	prior	written	permission	of	the	publisher.



p.3

In	This	Talk

Partially-Formed
definition
examples	from	C/C++

Moved-From	Objects
IndirectInt
std::remove_if
safe	and	unsafe	functions

Composability
flat_map

C++20	std::movable<>

Bonus	Slides:
Case	Study:	Pen
Weaker	Move	Semantics	Models
Exception	Guarantees

std::variant



p.4

Disclaimer

Disclaimer:

all	of	the	following	is	only	for	value	types
Regular	/	SemiRegular

not	for	RAII	or	polymorphic	types



p.5

The	Partially-Formed	State	in	C/C++98/EoP

The	Partially-Formed	State	in	C/C++98/EoP

The	Partially-Formed	State	in	C/C++98/EoP

Move	Semantics

Composability

C++20

Bonus	Slides



p.6

Elements	Of	Programming

The	Partially-Formed	State	in	C/C++98/EoP

elementsofprogramming.com



p.7

Elements	Of	Programming	(cont'd)

The	Partially-Formed	State	in	C/C++98/EoP

elementsofprogramming.com



p.8

What's	the	Partially-Formed	State?

The	Partially-Formed	State	in	C/C++98/EoP

An	object	is	in	the	partially-formed	state	if
it	can	be	assigned-to	and	destroyed.	(EoP)



p.9

Example	1.0

The	Partially-Formed	State	in	C/C++98/EoP

int	i;	//	`i`	is	partially-formed



p.10

Example	1.1

The	Partially-Formed	State	in	C/C++98/EoP

int	i	=	0;	//	is	`i`	is	partially-formed?



p.11

What's	the	Partially-Formed	State?

The	Partially-Formed	State	in	C/C++98/EoP

An	object	is	in	the	partially-formed	state	if
it	can	be	assigned-to	and	destroyed.	(EoP)



p.12

Definition	of	Partially-Formed

The	Partially-Formed	State	in	C/C++98/EoP

clearly,	every	object	is	partially-formed
when	assignable	and	destructable

this	is	EoP	Lemma	1.3:

in	this	talk:
Partially-Formed	:=	known	to	be	partially-formed,	not	known	to	be	well-formed



p.13

Example	1.1	(revised)

The	Partially-Formed	State	in	C/C++98/EoP

int	i	=	0;	//	`i`	is	partially-formed,	not	Partially-Formed



p.14

Example	2

The	Partially-Formed	State	in	C/C++98/EoP

std::string	s;	//	`s`	is	partially-formed,	not	Partially-Formed



p.15

Example	3

The	Partially-Formed	State	in	C/C++98/EoP

Rect	r;	//	`r`	is	Partially-Formed



p.16

Guideline	1

The	Partially-Formed	State	in	C/C++98/EoP

Unless	you	know	that	the	type	in	question	provides	more,
all	you	can	assume	is	that	a	default-constructed	object	is
Partially-Formed.



p.17

Guideline	2

The	Partially-Formed	State	in	C/C++98/EoP

Partially-Formed	is	a	program	state,	not	a	bit-pattern.



p.18

Example	4

The	Partially-Formed	State	in	C/C++98/EoP

1 auto	p	=	new	int{0};
2 delete	p;
3 //	`p`	is	...?



p.19

What's	the	Partially-Formed	State?

The	Partially-Formed	State	in	C/C++98/EoP

An	object	is	in	the	partially-formed	state	if
it	can	be	assigned-to	and	destroyed.	(EoP)



p.20

Example	4	(revisited)

The	Partially-Formed	State	in	C/C++98/EoP

1 auto	p	=	new	int{0};
2 delete	p;
3 //	`p`	is	Partially-Formed
4 //	C++:	[basic.stc]/4	(footnote!)



p.21

Example	4.1

The	Partially-Formed	State	in	C/C++98/EoP

1 auto	p	=	new	int{0};
2 auto	q	=	p;
3 delete	p;
4 //	`p`	and	`q`	are	Partially-Formed
5 //	cf.	P1726	for	an	overview



p.22

Example	5

The	Partially-Formed	State	in	C/C++98/EoP

1 std::input_iterator	auto	it	=	~~~;
2 auto	jt	=	it;
3 ++it;



p.23

What's	the	Partially-Formed	State?

The	Partially-Formed	State	in	C/C++98/EoP

An	object	is	in	the	partially-formed	state	if
it	can	be	assigned-to	and	destroyed.	(EoP)



p.24

Example	5	(revisited)

The	Partially-Formed	State	in	C/C++98/EoP

1 std::input_iterator	auto	it	=	~~~;
2 auto	jt	=	it;
3 ++it;
4 //	`jt`	is	Partially-Formed
5 //	C++:	[tab:inputiterator],	EoP:	Section	6.2



p.25

Example	5	(rewritten)

The	Partially-Formed	State	in	C/C++98/EoP

1 std::input_iterator	auto	it	=	~~~;
2 auto	jt	=	std::next(it);
3 auto	value	=	*it;



p.26

Example	5	(rewritten)	(cont'd)

The	Partially-Formed	State	in	C/C++98/EoP

1 std::input_iterator	auto	it	=	~~~;
2 auto	jt	=	std::next(it);            //	UNSAFE	function
3 auto	value	=	*it;	//	oops,	`it`	was	Partially-Formed



p.27

Example	5	(rewrite	fixed)

The	Partially-Formed	State	in	C/C++98/EoP

1 std::input_iterator	auto	it	=	~~~;
2 std::advance(it,	1);                 //	SAFE	function
3 auto	value	=	*it;	//	OK



p.28

Guideline	3

The	Partially-Formed	State	in	C/C++98/EoP

If	you	feel	uncomfortable	around	Partially-Formed	state,	avoid	it:

Immediately-Invoked	Lambda	Expression	(IILE)

std::unique_ptr	 

But	not	in	the	type	design!

Default	ctor	need	not	establish	a	valid	value.
"Don't	pay	for	what	you	don't	use"!
"When	in	Rome^WC++,	do	as	the	Romans^Wints	do"!



p.29

Example	1.0	(fixed)

The	Partially-Formed	State	in	C/C++98/EoP

1 int	i	=	[&]	{
2     switch	(~~~)
3     case	~~~:	return	42;
4     ~~~~
5     };
6 }();
7
8 use(i);



p.30

Example	1.0	(fixed	wrongly)

The	Partially-Formed	State	in	C/C++98/EoP

1 int	i	=	0;	//	must	...	always	...	initialise
2
3 switch	(~~~)
4 case	~~~:	i	=	42;	break;
5 ~~~~
6 };
7
8 use(i);



p.31

Example	4.1	(fixed)

The	Partially-Formed	State	in	C/C++98/EoP

1 auto	p	=	std::make_unqiue<int>(0);
2 auto	q	=	p;	//	ERROR:	move-only	type
3 p.reset();
4 //	`p`	==	nullptr	---	well-formed



p.32

C/C++98/EoP	Summary

The	Partially-Formed	State	in	C/C++98/EoP

Be	precise:
partially-formed	=	destructible	and	assignable
partially-formed-not-known-to-be-well-formed
partially-formed-known-not-to-be-well-formed

Partially-Formed	Objects	exist	in	the	language	as	early	as	K&R	C	/	C++98:
default-initialised	objects
invalid	pointers
copies	of	an	InputIterator	since	advanced

Guidelines:
Unless	you	know	that	the	type	in	question	provides	more,	all	you	can	assume	is	that	a	default-
constructed	object	is	Partially-Formed.
Partially-Formed	is	a	program	state,	not	a	bit-pattern.
If	you	feel	uncomfortable	around	Partially-Formed	state,	avoid	it,	but	not	in	type	design.	 



p.33

C/C++98/EoP	Summary	(cont'd)

The	Partially-Formed	State	in	C/C++98/EoP

References:

Alex	Stepnov	et	al	(2009):	http://elementsofprogramming.com

Paul	E.	McKenney	et	al	(2019):	http://wg21.link/p1726

std:
https://eel.is/c++draft/basic.stc#general-4
https://eel.is/c++draft/tab:inputiterator#row-6	 

http://elementsofprogramming.com
http://wg21.link/p1726
https://eel.is/c++draft/basic.stc#general-4
https://eel.is/c++draft/tab:inputiterator#row-6


p.34

Move	Semantics

Move	Semantics

The	Partially-Formed	State	in	C/C++98/EoP

Move	Semantics

Composability

C++20

Bonus	Slides



p.35

Example	6

Move	Semantics

Consider	this	C++98	class	(by	Geoffrey	Romer):

1 class	IndirectInt	{
2     boost::shared_ptr<int>	m_i;	//	class	invariant:	never	NULL
3 public:
4     explicit	IndirectInt(int	i	=	0)	:	m_i(boost::make_shared<int>(i))	{}
5     //	compiler-generated	copy	operations	/	dtor	are	ok!
6     //	(Rule	Of	Zero)
7
8     friend	bool	operator==(const	IndirectInt&	lhs,	const	IndirectInt&	rhs)	{
9         return	*lhs.m_i	==	*rhs.m_i;

10     }
11     friend	std::ostream&	operator<<(std::ostream&	s,	const	IndirectInt&	i)	{
12         return	s	<<	*i.m_i;
13     }
14 };

Herb	Sutter	(in	"Move,	Simply!"):	//	Buggy	class:	Move	leaves	behind	a	null	smart	pointer

https://herbsutter.com/2020/02/17/move-simply/


p.36

From	C++98	to	C++11

Move	Semantics

"[A	pure	library	implementation	of	move	semantics]
did	not	"automatically"	move	from	rvalues	which
is	a	really	nice	feature	of	the	current	proposal.
This	allows	completely	safe	move	semantics
to	come	into	client	code	with	absolutely	no	code
changes	for	the	client."

(N1377	(2002))	



p.37

Guideline	4

Move	Semantics

Treat	moved-from	objects	as	Partially-Formed.



p.38

Guideline	4	(rephrased)

Move	Semantics

Unless	you	know	that	the	type	in	question	provides	more,
all	you	can	assume	is	that	a	moved-from	object	is
Partially-Formed.



p.39

Example	7

Move	Semantics

1 std::vector<IndirectInt>	v	=	~~~;
2 std::remove(v.begin(),	v.end(),	IndirectInt(0));
3 for	(auto&	i	:	v)	//	exposition	only
4     std::cout	<<	i;



p.40

Guideline	5	(Very	Old:	Effective	STL)

Move	Semantics

Treat	objects	in	[std::remove,	end)	as	Partially-Formed,
use	Erase-Remove-Idiom.



p.41

Example	7	(fixed)

Move	Semantics

1 std::vector<IndirectInt>	v	=	~~~;
2 v.erase(std::remove(v.begin(),	v.end(),	IndirectInt(0)),
3         v.end());
4 for	(auto&	i	:	v)
5     std::cout	<<	i;



p.42

Example	7	(fixed,	[C++20])

Move	Semantics

1 std::vector<IndirectInt>	v	=	~~~;
2 std::erase(v,	IndirectInt(0));
3 for	(auto&	i	:	v)
4     std::cout	<<	i;



p.43

Conjecture:	Observable	moved-from	states

Move	Semantics

Conjecture:
The	remove-like	algorithms	(remove/remove_if/unique)
are	the	only	cases	where	moved-from	objects
appear	in	a	C++	program	without	an	explicit	cast
(std::move,	std::forward,	static_cast<T&&>).



p.44

Guideline	6.1	(Sean	Parent)

Move	Semantics

std::move()	is	an	unsafe	operation.



p.45

Guideline	6.2

Move	Semantics

std::move()	is	an	unsafe	operation.
But	std::exchange(.,	{})	is	its	safe	companion.



p.46

Guideline	7

Move	Semantics

If	you	can't	tolerate	the	thought	of	partially-formed	objects,
prefer	C++20	erase_if()	over	std::remove_if(),
and	C++14	std::exchange(x,	{})	over	std::move(x).



p.47

Guideline	7'

Move	Semantics

If	you	can't	tolerate	the	thought	of	partially-formed	objects,
prefer	safe	over	unsafe	functions.



p.48

Move	Semantics	Summary

Move	Semantics

Valid	C++98	programs	become	"invalid"	C++11	ones	unless	you	treat	moved-from	objects	as	partially-
formed.

Guidelines:
Treat	moved-from	objects	as	Partially-Formed.
Treat	objects	in	[std::remove,	end)	as	Partially-Formed,	use	Erase-Remove-Idiom,	or	std::erase().
std::move()	is	an	unsafe	operation	(and	so	are	std::remove(),	std::remove_if(),	std::unique()).
If	you	can't	tolerate	the	thought	of	partially-formed	objects,

prefer	safe	over	unsafe	operations.

References:
Scott	Meyers	(2001):	Effective	STL
Howard	Hinnant	(2002):	http://wg21.link/N1377
Marc	Mutz	(2017):	https://www.kdab.com/stepanov-regularity-partially-formed-objects-vs-c-value-types/
Herb	Sutter	(2019):	https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
Geoff	Romer	(2020):	http://wg21.link/p2027
Herb	Sutter	(2020):	https://herbsutter.com/2020/02/17/move-simply/	 

http://wg21.link/N1377
https://www.kdab.com/stepanov-regularity-partially-formed-objects-vs-c-value-types/
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
http://wg21.link/p2027
https://herbsutter.com/2020/02/17/move-simply/


p.49

Composability

Composability

The	Partially-Formed	State	in	C/C++98/EoP

Move	Semantics

Composability

C++20

Bonus	Slides



p.50

Partially-Formed	States	Are	Closed	Under	Composition

Composability

1 struct	VectorAndIndex	{
2     std::vector<int>	vec;
3     int	index;	//	index	into	'vec'
4 >;
5



p.50

Partially-Formed	States	Are	Closed	Under	Composition

Composability

1 struct	VectorAndIndex	{
2     std::vector<int>	vec;
3     int	index;	//	index	into	'vec'
4 >;
5
6 VectorAndIndex	vi1;      //	partially-formed-not-well-formed



p.50

Partially-Formed	States	Are	Closed	Under	Composition

Composability

1 struct	VectorAndIndex	{
2     std::vector<int>	vec;
3     int	index;	//	index	into	'vec'
4 >;
5
6 VectorAndIndex	vi1;      //	partially-formed-not-well-formed
7 VectorAndIndex	vi2	=	{};	//	partially-formed-not-well-formed



p.50

Partially-Formed	States	Are	Closed	Under	Composition

Composability

1 struct	VectorAndIndex	{
2     std::vector<int>	vec;
3     int	index;	//	index	into	'vec'
4 >;
5
6 VectorAndIndex	vi1;      //	partially-formed-not-well-formed
7 VectorAndIndex	vi2	=	{};	//	partially-formed-not-well-formed
8 auto	vi3	=	VectorAndIndex{{0,	1,	2},	0};      //	well-formed
9 auto	vi4	=	std::move(vi3);

10               //	vi3	is	now	partially-formed-not-well-formed



p.51

Lemma	1:	Partially-Formed	States	Are	Closed	Under	Composition

Composability

Lemma	1:	Let	N>1	and	Ti,	1	≤	i	≤	N,	be	semi-regular.	Let	S	be	a	struct	{	T1	t1;	...;	TN	tN;	}	and	s	∈
Domain(S).	Then	∃1	≤	i	≤	N	:	ti	Partially-Formed	⇒	s	is	Partially-Formed.

Proof:	Trivial	(by	way	of	member-wise	assignment	and	destruction).



p.52

std	moved-from	objects

Composability

Unless	otherwise	specified,	moved-from	objects
are	placed	in	a	valid,	but	unspecified	state.



p.53

std	moved-from	objects	(cont'd)

Composability

valid,	but	unspecified	<=>
can	apply	all	wide-contract	operations	on	the	type



p.54

Lemma	2:	valid-but-unspecified	is	not	closed	under	composition

Composability

Lemma	2:	valid-but-unspecified	is	not	closed	under	composition.

Proof:	By	contradiction:	Assume	Lemma	false,	then	flat_map	doesn't	need	a	custom	move	constructor.



p.55

Example	8

Composability

1 template	<class	K,	class	V,	~~~	Compare	~~~,
2           typename	KC	=	std::vector<K>,
3           typename	VC	=	std::vector<V>>
4 class	flat_map	{
5     KC	m_keys;
6     VC	m_values;
7 public:
8     flat_map(flat_map&&)	=	default;
9     auto	size()	const	{

10         return	m_keys.size();	//	P0429
11         return	m_values.size();	//	?
12         return	std::min(m_keys.size(),	m_values.size());	//	?
13     }
14 };



p.56

Example	8	(wrong	fix)

Composability

1 template	<class	K,	class	V,	~~~	Compare	~~~,
2           typename	KC	=	std::vector<K>,
3           typename	VC	=	std::vector<V>>
4 class	flat_map	{
5     KC	m_keys;
6     VC	m_values;
7 public:
8     flat_map(flat_map&&	other)	noexcept
9         :	m_keys(std::move(other.m_keys)),

10           m_values(std::move(other.m_values))
11     {   other.m_keys.clear();      //	extra
12         other.m_values.clear();	}  //	work
13     auto	size()	const	{
14         return	m_keys.size();	//	OK
15     }
16 };



p.57

Composability	Summary

Composability

Using	language	defaults...

Partially-Formed	objects	composed	are	Partially-Formed

Valid-But-Unspecified	objects	composed	are	not	Valid-But-Unspecified	 

References:

Zach	Laine	(2016..2019)	https://wg21.link/P0429

https://wg21.link/P0429


p.58

C++20

C++20

The	Partially-Formed	State	in	C/C++98/EoP

Move	Semantics

Composability

C++20

Bonus	Slides



p.59

std	moved-from	objects

C++20

Moved-from	objects	are	placed	in	a	valid,	but	unspecified	state.



p.60

C++20	User-Type	Constraining

C++20

C++17	only	promised	this	for	std	types

C++20	seems	to	require	this	for	user-types,	too:
std::movable	requires	std::move_constructible
std::move_constuctible	requires	(in	prose):

"[...]	rv's	resulting	state	[...]	is	valid	but	unspecified;	[...]"	 



p.61

Guideline	8

C++20

Ignore	[concept.moveconstructible]/1.3.	It	will	be	fixed.
No	implementation	can	depend	on	it.



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable

In	C++11+,	std::swap()	uses	moves

Now	consider	self-swap:	std::swap(x,	x)

2	Solutions:
Either	make	move-assign-from	moved-from	objects	self-assign-save

Always	the	case	when	using	the	Move-and-Swap	Idiom
Or	provide	swap()	overload	found	using	ADL	that's	self-swap-save

None	of	these	usually	require	extra	work.



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable

In	C++11+,	std::swap()	uses	moves



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable

In	C++11+,	std::swap()	uses	moves

Now	consider	self-swap:	std::swap(x,	x)



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable

In	C++11+,	std::swap()	uses	moves

Now	consider	self-swap:	std::swap(x,	x)

1 //	auto&	lhs	=	x;	auto&	rhs	=	x;
2 T	tmp	=	std::move(lhs);
3 lhs	=	std::move(rhs);	//	move-assigns-from	moved-from	object
4 rhs	=	std::move(tmp);



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable

In	C++11+,	std::swap()	uses	moves

Now	consider	self-swap:	std::swap(x,	x)

1 //	auto&	lhs	=	x;	auto&	rhs	=	x;
2 T	tmp	=	std::move(lhs);
3 lhs	=	std::move(rhs);	//	move-assigns-from	moved-from	object
4 rhs	=	std::move(tmp);

2	Solutions:



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable

In	C++11+,	std::swap()	uses	moves

Now	consider	self-swap:	std::swap(x,	x)

1 //	auto&	lhs	=	x;	auto&	rhs	=	x;
2 T	tmp	=	std::move(lhs);
3 lhs	=	std::move(rhs);	//	move-assigns-from	moved-from	object
4 rhs	=	std::move(tmp);

2	Solutions:
Either	make	move-assign-from	moved-from	objects	self-assign-save



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable

In	C++11+,	std::swap()	uses	moves

Now	consider	self-swap:	std::swap(x,	x)

1 //	auto&	lhs	=	x;	auto&	rhs	=	x;
2 T	tmp	=	std::move(lhs);
3 lhs	=	std::move(rhs);	//	move-assigns-from	moved-from	object
4 rhs	=	std::move(tmp);

2	Solutions:
Either	make	move-assign-from	moved-from	objects	self-assign-save

Always	the	case	when	using	the	Move-and-Swap	Idiom



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable

In	C++11+,	std::swap()	uses	moves

Now	consider	self-swap:	std::swap(x,	x)

1 //	auto&	lhs	=	x;	auto&	rhs	=	x;
2 T	tmp	=	std::move(lhs);
3 lhs	=	std::move(rhs);	//	move-assigns-from	moved-from	object
4 rhs	=	std::move(tmp);

2	Solutions:
Either	make	move-assign-from	moved-from	objects	self-assign-save

Always	the	case	when	using	the	Move-and-Swap	Idiom
Or	provide	swap()	overload	found	using	ADL	that's	self-swap-save



p.62

The	Hinnant	Extension

C++20

EoP's	swap()	works	in	terms	of	copies	(like	C++98	std::swap())

std::movable	requires	std::swappable

In	C++11+,	std::swap()	uses	moves

Now	consider	self-swap:	std::swap(x,	x)

1 //	auto&	lhs	=	x;	auto&	rhs	=	x;
2 T	tmp	=	std::move(lhs);
3 lhs	=	std::move(rhs);	//	move-assigns-from	moved-from	object
4 rhs	=	std::move(tmp);

2	Solutions:
Either	make	move-assign-from	moved-from	objects	self-assign-save

Always	the	case	when	using	the	Move-and-Swap	Idiom
Or	provide	swap()	overload	found	using	ADL	that's	self-swap-save

None	of	these	usually	require	extra	work.



p.63

Guideline	9

C++20

Prefer	to	provide	an	ADL	swap()	overload	that	is	self-swap-safe.
Alternatively:
Ensure	the	move-assignment	operator	is	self-swap-safe
even	in	the	partially-formed	state.



p.64

Guideline	10

C++20

Libraries	may	want	to	avoid	depending	on	a	working	self-swap.



p.65

C++20	Summary

C++20

Guidelines:

Ignore	[concept.moveconstructible]/1.3.	It	will	be	fixed.

Prefer	to	provide	an	ADL	swap()	overload	that	is	self-swap-safe.
Alternatively,	ensure	the	move-assignment	operator	is	self-swap-safe

even	in	the	partially-formed	state.

Libraries	may	want	to	avoid	depending	on	a	working	self-swap.

References:

https://eel.is/c++draft/concept.moveconstructible#1.3

https://eel.is/c++draft/concept.moveconstructible#1.3


p.66

End	of	Main	Talk

Thank	you	for	your	attention!
Questions?



p.67

Bonus	Slides

Bonus	Slides

The	Partially-Formed	State	in	C/C++98/EoP

Move	Semantics

Composability

C++20

Bonus	Slides
A	Case	Study:	Pen
Weaker	Models
Weak	Exception	Guarantees



p.68

Bonus	Slides

A	Case	Study:	Pen

A	Case	Study:	Pen

Weaker	Models

Weak	Exception	Guarantees



p.69

A	Case	Study:	Implicitly-Shared	Pen	I:	SMFs

A	Case	Study:	Pen

.h
1 class	Pen	{
2     struct	Private;
3     Private	*d;	//	Pimpl	Pattern
4 public:
5     constexpr	Pen()	noexcept
6         :	d{nullptr}	{}
7     Pen(const	Pen&	other);
8     Pen(Pen&&	other)	noexcept
9         :	d{std::exchange(other.d,	{})}	{}

10     Pen&	operator=(const	Pen&	other)
11     {	Pen{other}.swap(*this);	return	*this;	}
12     Pen&	operator=(Pen&&	other)	noexcept
13     //	Pen{std::move(other)}.swap(*this);
14     {	swap(other);	return	this;	}
15     ~Pen();
16     void	swap(Pen&	other)	noexcept
17     {	std::ranges::swap(d,	other.d);	}
18
19 private:
20     friend	void	swap(Pen&	lhs,	Pen&	rhs)	noexcept	{	lhs.swap(rhs);	}
21     ~~~

.cpp
1 struct	Pen::Private	{
2     std::atomic<int>	ref;
3     ~~~
4 };
5 Pen::Pen(const	Pen&	other)	:	d(other.d)	{
6     assert(d);	//	no	copying	from	partially-formed
7     ++d->ref;
8 }
9 Pen::~Pen()	{

10     if	(d	&&	!--d->ref)
11         delete	d;
12 }



p.70

A	Case	Study:	Implicitly-Shared	Pen	II:	domain	members

A	Case	Study:	Pen

.h
1 ~~~
2     void	detach();
3
4 public:
5     static	Pen	solid(Color	c,	int	thickness);
6
7     Color	color()	const;
8     void	setColor(Color	c);
9 };

.cpp
1 struct	Pen::Private	{
2     std::atomic<int>	ref;
3     Color	color;
4     int	thickness;
5     ~~~
6 };
7 void	Pen::detach()	{
8     //	???
9     if	(d->ref	!=	1)

10         d	=	new	Private{*d};	//	modulo	std::atomic
11 }
12 Pen	Pen::solid(Color	c,	int	thickness)	{
13     Pen	result;
14     result.d	=	new	Private{1,	c,	thickness};
15     return	result;
16 }
17 Color	Pen::color()	const	{
18     assert(d);	//	not	allowed	on	partially-formed
19     return	d->color;
20 }
21 void	Pen::setColor(Color	c)	{
22     detach();
23     d->color	=	c;
24 }



p.70

A	Case	Study:	Implicitly-Shared	Pen	II:	domain	members

A	Case	Study:	Pen

.h
1 ~~~
2     void	detach();
3
4 public:
5     static	Pen	solid(Color	c,	int	thickness);
6
7     Color	color()	const;
8     void	setColor(Color	c);
9 };

.cpp
1 struct	Pen::Private	{
2     std::atomic<int>	ref;
3     Color	color;
4     int	thickness;
5     ~~~
6 };
7 void	Pen::detach()	{
8     assert(d);	//	no	detaching	from	partially-formed
9     if	(d->ref	!=	1)

10         d	=	new	Private{*d};	//	modulo	std::atomic
11 }
12 Pen	Pen::solid(Color	c,	int	thickness)	{
13     Pen	result;
14     result.d	=	new	Private{1,	c,	thickness};
15     return	result;
16 }
17 Color	Pen::color()	const	{
18     assert(d);	//	not	allowed	on	partially-formed
19     return	d->color;
20 }
21 void	Pen::setColor(Color	c)	{
22     detach();
23     d->color	=	c;
24 }



p.71

Bonus	Slides

Weaker	Models

A	Case	Study:	Pen

Weaker	Models

Weak	Exception	Guarantees



p.72

Overview	of	Move	Semantics	Models

Weaker	Models

std::move()	+	valid-but-unspecified

std::move()	+	partially-formed

std::pilfer()	+	pilfered	(destroy-only;	P0308)

destructive	move	 



p.73

Guideline	11

Weaker	Models

Move	semantics	violate	the	Zero-Overhead-Rule	(D&E,	P0559).
Partially-Formed	States	are	the	natural	states
in	the	move	semantics	model	we	have.



p.74

Bonus	Slides

Weak	Exception	Guarantees

A	Case	Study:	Pen

Weaker	Models

Weak	Exception	Guarantees



p.75

Abrahams'	Exception	Guarantees

Weak	Exception	Guarantees

basic
no	resource	leaks
all	invariants	maintained

"valid,	but	unspecified"

strong
transactional	semantics

nothrow



p.76

Abrahams'	Exception	Guarantees	Extended

Weak	Exception	Guarantees

weak
no	resource	leaks
objects	are	Partially-Formed

basic
weak	+	all	invariants	maintained

strong

nothrow



p.77

std::variant

Weak	Exception	Guarantees

"Weak"	Guarantee	is	probably	not	needed

diff	is	only	in	the	docs!

But	then	came	std::variant::valueless_by_exception()

Wouldn't	be	needed	if	we	had	the	weak	guarantee	instead



p.78

Thank	you	for	your	attention	(now	for	real)!
Questions?


